Some convergence properties of Minkowski functionals given by polytopes

نویسنده

  • Jesse Moeller
چکیده

In this work we investigate the behavior of the Minkowski Functionals admitted by a sequence of sets which converge to the unit ball ‘from the inside’. We begin in R2 and use this example to build intuition as we extend to the more general Rn case. We prove, in the penultimate chapter, that convergence ‘from the inside’ in this setting is equivalent to two other characterizations of the convergence: a geometric characterization which has to do with the sizes of the faces of each polytope in the sequence converging to zero, and the convergence of the Minkowski functionals defined on the approximating sets to the Euclidean Norm. In the last chapter we explore how we can extend our results to infinite dimensional vector spaces by changing our definition of polytope in that setting, the outlook is bleak. SOME CONVERGENCE PROPERTIES OF MINKOWSKI FUNCTIONALS GIVEN BY POLYTOPES A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree Master of Arts Jesse Moeller University of Northern Iowa May 2016

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minkowski Sum of Polytopes and Its Normality

In this paper, we consider the normality or the integer decomposition property (IDP, for short) for Minkowski sums of integral convex polytopes. We discuss some properties on the toric rings associated with Minkowski sums of integral convex polytopes. We also study Minkowski sums of edge polytopes and give a sufficient condition for Minkowski sums of edge polytopes to have IDP.

متن کامل

On f-vectors of Minkowski additions of convex polytopes

The objective of this paper is to present two types of results on Minkowski sums of convex polytopes. The first is about a special class of polytopes we call perfectly centered and the combinatorial properties of the Minkowski sum with their own dual. In particular, we have a characterization of face lattice of the sum in terms of the face lattice of a given perfectly centered polytope. Exact f...

متن کامل

f-Vectors of Minkowski Additions of Convex Polytopes

The objective of this paper is to present two types of results on Minkowski sums of convex polytopes. The first is about a special class of polytopes called perfectly centered and the combinatorial properties of the Minkowski sum with their own dual. In particular, we have a characterization of faces of the sum in terms of the face lattice of a given perfectly centered polytope. Exact face coun...

متن کامل

Relative Stanley–reisner Theory and Lower Bound Theorems for Minkowski Sums

This note complements an earlier paper of the author by providing a lower bound theorem for Minkowski sums of polytopes. In [AS16], we showed an analogue of McMullen’s Upper Bound theorem for Minkowski sums of polytopes, estimating the maximal complexity of such a sum of polytopes. A common question in reaction to that research was the question for an analogue for the Barnette’s Lower Bound The...

متن کامل

Absolute Irreducibility of Polynomials via Newton Polytopes

A multivariable polynomial is associated with a polytope, called its Newton polytope. A polynomial is absolutely irreducible if its Newton polytope is indecomposable in the sense of Minkowski sum of polytopes. Two general constructions of indecomposable polytopes are given, and they give many simple irreducibility criteria including the well-known Eisenstein’s criterion. Polynomials from these ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017